
CSC 311
Advanced Programming

Arthur Hoskey, Ph.D.
Farmingdale State College

Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Processes and threads overview

© 2023 Arthur Hoskey. All
rights reserved.

What is an Operating System?

 Computer System
◦ Software (programs)

◦ Hardware (physical machine and electronic components)

 Operating System
◦ Part of computer system (software)

◦ Manages all hardware and software

 Controls every file, device, section of main memory
and nanosecond of processing time

 Controls who can use the system

 Controls how system is used

© 2023 Arthur Hoskey. All
rights reserved.

What is an Operating System?

OS

Controls the Whole

System

Controls How All the

Devices Interact

OS OS

O S

O S

OS

© 2023 Arthur Hoskey. All
rights reserved.

Operating System

Operating system…

 Schedules when programs can use CPU

 Controls how memory (RAM) gets used

 Controls how the hard drive gets used

 And so on…

OS OS

O S

O S

OS

OS

Windows

Linux

Mac

© 2023 Arthur Hoskey. All
rights reserved.

 What happens when you
click the icon to run an
application?

 Important to understand
how a program actually
runs behind the scenes.

Operating Systems
© 2023 Arthur Hoskey. All
rights reserved.

Running a Program

 When a program is started the OS does
the following:
◦ Creates a process for the program.

◦ Copies the program from external memory
(hard drive, flash drive etc…) into RAM.

 A process is an instance of a running
program.

© 2023 Arthur Hoskey. All
rights reserved.

Running a Program

Hard Drive

Click program
to run

(word.exe)

Memory (RAM)

File

Word.exe

Process

Code from

Word.exe

OS creates a process

for the program

contained in

Word.exe

© 2023 Arthur Hoskey. All
rights reserved.

OS Controls Processes

Windows Task

Manager shows

information

about the

currently running

processes

Note: Windows Task

Manager has nothing to

do with C# Tasks

© 2023 Arthur Hoskey. All
rights reserved.

Processes vs Threads

 Process
◦ Active entity
 Requires resources to perform function

 Needs processor and special registers

◦ Executable program single instance

 Thread
◦ Portion of a process
◦ Runs independently

 Processor (different from a process)
◦ Central processing unit (CPU)
◦ Performs calculations and executes programs

Taken from: Understanding Operating Systems, Sixth Edition

© 2023 Arthur Hoskey. All
rights reserved.

Concurrency vs Parallel

 Concurrency – Two processes are making progress at once.
Processes can operate concurrently even with one CPU that has
one core. The OS can switch back and forth (very fast) and both
processes will be making progress.

 Parallel – Two processes operate simultaneously in real time.
They are not sharing a CPU and switching really fast and making
progress. They literally execute code at the same exact moment
in time. Multiple CPUs or multiple cores are needed to execute in
parallel.

© 2023 Arthur Hoskey. All
rights reserved.

Processes and Threads

 Processes are broken down to threads.

 Each process can contain multiple threads

 Threads can be scheduled individually.

 The number of threads in each process can vary.

Thread
1

Process 1

Thread
2

Thread
1

Thread
2

Process 2

Thread
3

Shared Process Resources Shared Process Resources

© 2023 Arthur Hoskey. All
rights reserved.

Thread

 Thread – A smaller unit of a process which can be
scheduled and executed.

 Process Resources Shared- Threads of a process
share the resources of the containing process.

 Process can have more than one thread active.

 You can setup threads to run a particular method in a
program.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Process Broken Down to Threads

Thread 1

Method B

Process

Program {

Method A {}

Method B {}

Method C {}

}

Thread 2

Method C

Thread 3

Method A

Threads running

individual

methods of a

program

© 2023 Arthur Hoskey. All
rights reserved.

CPU with Multiple Cores

 A CPU is responsible for actually running the code
contained in processes and threads.

 A CPU can have multiple cores (a core is like a mini
CPU)

 Each core can run a thread of its own.

 The cores run independently.

Core 1

CPU

Core 2

Core 3 Core 4

This CPU

has 4

cores

© 2023 Arthur Hoskey. All
rights reserved.

Threads Running Methods

Thread 1

Method B

Thread 2

Method C

Thread 3

Method A

Process can be broken down into

threads and the threads can be run

individually at the same time

Process

Program {

Method A {}

Method B {}

Method C {}

}

Core 1

Thread 1

CPU - A

Core 2

Core 1

Thread 3

CPU - B

Core 2

Thread 2

© 2023 Arthur Hoskey. All
rights reserved.

Multithreading Issues

 Multithreading Tradeoff - A multithreaded program gives the
benefit of doing two things at once, but it introduces more
complexity into the program.

 A multithreaded program most likely contains timing issues that
are not present in a single threaded program.
◦ For example, if thread 1 needs data from thread 2 then thread 1 needs to "wait"

for thread 2 to finish before it can execute.

◦ These types of timing issues can become very challenging to deal with.

 Imagine a program with 20 threads and multiple timing
dependencies.

 Theses types of programs are much harder to debug.

© 2023 Arthur Hoskey. All
rights reserved.

Synchronous Programming

Synchronous Programming

 Call a method on the same thread.

 Calling method must wait until the called
method finishes.

 This means everything stops until that called
method returns.

© 2023 Arthur Hoskey. All
rights reserved.

Asynchronous Programming

Asynchronous Programming

 A worker method is called that runs in the
background (this may or may not be another thread).

 The calling thread is not blocked (does not have to
wait).

 Notification From Worker - The worker thread
notifies the calling thread when it finishes.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Async – Start worker method

Main Thread

MainGUIProcessing()

Main GUI processing thread can start

worker method asynchronously to get

data from web

Process

Program {

void MainGUIProcessing()

{

// Code to continuously

// handle window events…

// Code to run worker

// method

// More code to continuously

// handle window events…

}

void GetDataFromWeb() {

// Code to download

// data from web.

}

}

Worker Method

GetDataFromWeb()

Main Thread starts

worker method

Main Thread DOES NOT WAIT,

continues running code after spawning

other thread

© 2023 Arthur Hoskey. All
rights reserved.

Thread Finishing Notification

Main Thread

MainGUIProcessing()

When the asynchronous worker

method finishes it notifies the calling

thread that it is done.

The calling thread now knows it has

the data it needs and can process it.

Process

Program {

void MainGUIProcessing()

{

// Code to continuously

// handle window events

// Code to run worker

// method

}

void GetDataFromWeb() {

// Code to download

// data from web.

}

}

Worker Method

GetDataFromWeb()

Worker method notifies

calling thread when it

finishes

© 2023 Arthur Hoskey. All
rights reserved.

Asynchronous Programming
Benefits

 Asynchronous programming is good because the main
thread does not need to block/wait for long running
processes to finish.

 If it had to wait, then you would get a "hanging"
effect in the main program (it would not respond to
user input).

 The main thread continues processing user input
while the worker method does other needed
processing in the background (simultaneously).

© 2023 Arthur Hoskey. All
rights reserved.

Critical Section

 Critical Section - A section of code that can only be
entered by one thread at a time.

 This section of code is mutually exclusive, only one thread
is allowed in.

 For example, a security check line scanner only allows one
person to be scanned at a time.

 Another example is a one lane bridge (allows only one car).

© 2023 Arthur Hoskey. All
rights reserved.

Thread Synchronization

 Thread synchronization – Make sure that only one
thread can access a critical section at any one
moment in time.

 Once one thread leaves the critical section another
can enter the critical section.

 Java has different ways to perform thread
synchronization

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

synchronized

 synchronized – Java keyword used to create a
critical section.

 Only one thread is allowed inside the
synchronized area at any one moment in time.

© 2023 Arthur Hoskey. All
rights reserved.

synchronized Method

synchronized Method

 Use the synchronized keyword to create a method that serves as
a critical section.

 Add the synchronized keyword to the method header.

// A synchronized method defines a critical section

public synchronized void myMethod() {

// Critical section code goes here…

}

Each thread calls MyMethod but only one of them is allowed to run it at any
one moment in time. The other thread must wait until it is finished.

© 2023 Arthur Hoskey. All
rights reserved.

Thread 1

MyMethod()

Thread 2

MyMethod()

synchronized Block

synchronized Block

 Use the synchronized keyword to create a code block that serves
as a critical section.

 There needs to be a lock on the critical section.

 Java objects can serve as locks.

 Only one thread at a time is allowed to execute the code in the
synchronized block.

// An object will serve as a lock (must be reachable by all threads)

Object myLock = new Object();

// A synchronized block defines a critical section

synchronized (myLock) {

// Critical section code goes here…

}

© 2023 Arthur Hoskey. All
rights reserved.

Deadlock

Deadlock

 Deadlock – Multiple processes are stuck waiting for each other.

 Thread 1 – Holds lock A, waiting to get lock B

 Thread 2 – Holds lock B, waiting to get lock A

 Both threads cannot proceed until the other thread releases their
lock.

© 2023 Arthur Hoskey. All
rights reserved.

Thread 1

Has lock A,
Waiting for

lock B

Thread 2

Has lock B,

Waiting for
lock A

Thread 1 is waiting for Thread 2

to release a lock (it cannot

proceed)

Thread 2 is waiting for Thread 1

to release a lock (it cannot

proceed)

DEADLOCK!!!

Deadlock Example

Deadlock Example
Object lockA = new Object();

Object lockB = new Object();

void methodForThread1() {

synchronized(lockA) {

// Do something time consuming so thread 1 is forced from CPU here…

synchronized(lockB) {

// code that requires both locks goes here…

}

}

void methodForThread2() {

synchronized(lockB) {

// Do something time consuming so thread 2 is forced from CPU here…

synchronized(lockA) {

// code that requires both locks goes here…

}

}

© 2023 Arthur Hoskey. All
rights reserved.

Thread 1 gets lockA first

then tries to get lockB

Thread 2 gets lockB first

then tries to get lockA

Assume the following (thread creation not shown):

thread 1 runs methodForThread1

thread 2 runs methodForThread2

Deadlock Solution

Deadlock Solution

 Both threads should acquire the locks in the exact same order.

 Both threads will only try to acquire lock B only if they have lock A.
The only way to get lock B is if it already has lock A.

void methodForThread1() {

synchronized(lockA) {

// Do something time consuming so thread 1 is forced from CPU here…

synchronized(lockB) {

// code that requires both locks goes here…

}

}

void methodForThread2() {

synchronized(lockA) {

// Do something time consuming so thread 2 is forced from CPU here…

synchronized(lockB) {

// code that requires both locks goes here…

}

}

© 2023 Arthur Hoskey. All
rights reserved.

Both threads will now try to

acquire the locks in the same

order (lock A then lock B)

Producers-Consumers Problem

Producer-Consumer Problem

 There is one producer and one consumer of a shared data
buffer.

 Producer – Puts data in the buffer.

 Consumer – Reads and removes data from buffer
(removing data modifies the state of the buffer).

 Both the producer and the consumer modify the buffer.

 This problem requires synchronization. If access to the
buffer is not synchronized between the producer and
consumer problems can arise.

© 2023 Arthur Hoskey. All
rights reserved.

Buffer
ConsumerProducer

Readers-Writers Problem

Readers-Writers Problem

 Writers modify the shared data buffer

 Readers do NOT modify the shared data buffer.

 Multiple simultaneous readers are allowed.

 When a writer is writing the readers are not allowed
access.

 This problem requires synchronization. If access to the
buffer is not synchronized between the readers and the
writer problems can arise.

© 2023 Arthur Hoskey. All
rights reserved.

Buffer

Reader

Writer

Reader Reader

Producer-Consumer vs Readers-
Writers

Producer-Consumer vs Readers-Writers

 Differences with respect to producer-consumer:
◦ The readers do not modify the buffer (they are read only). On

the other hand, consumers do modify the buffer (consumers
remove data from the buffer).

◦ Multiple readers are allowed in readers-writers. In producers-
consumers there is only one consumer.

© 2023 Arthur Hoskey. All
rights reserved.

Tasks

 End of slides.

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: CSC 311 Advanced Programming
	Slide 2: Today’s Lecture
	Slide 3: What is an Operating System?
	Slide 4: What is an Operating System?
	Slide 5: Operating System
	Slide 6: Operating Systems
	Slide 7: Running a Program
	Slide 8: Running a Program
	Slide 9: OS Controls Processes
	Slide 10: Processes vs Threads
	Slide 11: Concurrency vs Parallel
	Slide 12: Processes and Threads
	Slide 13: Thread
	Slide 14: Process Broken Down to Threads
	Slide 15: CPU with Multiple Cores
	Slide 16: Threads Running Methods
	Slide 17: Multithreading Issues
	Slide 18: Synchronous Programming
	Slide 19: Asynchronous Programming
	Slide 20: Async – Start worker method
	Slide 21: Thread Finishing Notification
	Slide 22: Asynchronous Programming Benefits
	Slide 23: Critical Section
	Slide 24: Thread Synchronization
	Slide 25: synchronized
	Slide 26: synchronized Method
	Slide 27: synchronized Block
	Slide 28: Deadlock
	Slide 29: Deadlock Example
	Slide 30: Deadlock Solution
	Slide 31: Producers-Consumers Problem
	Slide 32: Readers-Writers Problem
	Slide 33: Producer-Consumer vs Readers-Writers
	Slide 34: Tasks

